D-amino-acid oxidase gene from Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217.
نویسندگان
چکیده
The complete nucleotide sequence of the DAO1 gene encoding D-amino-acid oxidase (DAAO) in the yeast Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217 has been determined. The primary structure of DAAO was deduced from the nucleotide sequence of a cDNA clone that covered the entire amino acid coding sequence. Comparison of cDNA and genomic sequences of DAO1 revealed the presence of five introns. Because this is the first gene of strain ATCC 26217 that has been cloned so far, the nucleotide sequences of these introns were compared to those from other fungi. Upstream of the structural gene there was a stretch of C + T-rich DNA similar to that found in the promoter region of a number of yeast genes. The cDNA gene, which encoded a protein of 368 amino acids (molecular mass 40 kDa), was overexpressed in Escherichia coli under the control of the strong lipoprotein promoter. Interestingly, a significant fraction (13-62%) of the total DAAO activity was recovered in its apoenzyme form, the percentage depending on the culture conditions. This fact allowed a rapid purification of the recombinant DAAO by affinity chromatography. The high level of expression achieved in E. coli and the possibility of modifying its catalytic properties by protein engineering provide a new model for the study of this enzyme.
منابع مشابه
Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.
The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a g...
متن کاملErratum to: Engineering an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species
BACKGROUND Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. RESULTS We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and...
متن کاملDraft Genome Sequences of Rhodosporidium toruloides Strains ATCC 10788 and ATCC 10657 with Compatible Mating Types
Rhodosporidium toruloides ATCC 10788 (haploid, A1 mating type) and ATCC 10657 (haploid, A2 mating type) were derived from the same diploid parent strain Rhodotorula glutinis ATCC 90781 and are important strains for metabolic engineering. Draft genome sequences of both strains are reported here. The current assembly of strain ATCC 10788 comprises 61 scaffolds with a total size of 20.75 Mbp and a...
متن کاملFunctional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides.
The basidiomycete yeast Rhodosporidium toruloides (a.k.a. Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefac...
متن کاملModulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution.
Recent research on the flavoenzyme D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) has revealed new, intriguing properties of this catalyst and offers novel biotechnological applications. Among them, the reaction of RgDAAO has been exploited in the analytical determination of the D-amino acid content in biological samples. However, because the enzyme does not oxidize acidic D-amino acid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 144 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1998